Ácido anacárdico: principal constituinte do líquido da castanha do caju com potencial atividade antileishmania / Anacardic acid: main constituent of cashew nut liquid with potential antileishmania activity

Iuliana Marjory Martins Ribeiro, Michel Muálem de Moraes Alves, Ivete Lopes de Mendonça

Resumo


As leishmanioses são doenças negligenciadas causadas por protozoários do gênero Leishmania, sendo a Leishmaniose Visceral (LV) sua forma clínica mais grave. O tratamento de escolha contra LV é realizado com antimoniais pentavalentes, anfotericina B, paromomicina e miltefosina, porém o uso desses fármacos por longos períodos resulta em efeitos adversos graves, baixa tolerância e desenvolvimento de cepas resistentes, contribuindo para a ineficácia dos regimes terapêuticos, o que requer a busca por novos agentes terapêuticos. As plantas são consideradas uma importante fonte de produtos naturais que podem ser explorados com sucesso para o desenvolvimento de drogas com atividade antileishmania.  Dentre as plantas medicinais amplamente utilizadas, destaca-se o cajueiro (Anacardium occidentale L.), que possui características biológicas, como atividades antiinflamatórias, antimicrobianas, antioxidantes, antitumorais, larvicidas e inseticidas, exibindo grande potencial terapêutico. O presente estudo objetivou discorrer sobre o ácido anacárdico - componente majoritário do líquido da castanha do caju (LCC) - e seu potencial efeito antileishmania. Realizou-se uma análise eletrônica na base de dados da Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS), PubMed, MEDLINE e Scielo. O uso do ácido anacárdico no tratamento da leishmaniose é uma alternativa promissora aos fármacos utilizados atualmente. Entretanto, é necessário que mais estudos sejam realizados, especialmente visando investigar se esses compostos ativos possuem efeitos citotóxicos e como estes se comportam in vivo.

Palavras-chave


Leishmaniose visceral; Produtos naturais; Drogas antileishmaniais

Texto completo:

PDF

Referências


ALEXANDRE, T.R. Efeitos terapêuticos do ácido anacárdico associado à nanoemulsões à base de óleo de açaí (Euterpe oleracea Mart.) no tratamento de células de câncer de mama com diferentes potenciais metastáticos, in vitro. 2018. 140f. Dissertação (Mestrado) - Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, 2018.

ALVAR, J. et al. Leishmaniasis Worldwide and Global Estimates of Its Incidence. PLoS ONE, v. 7, n. 5, 2012.

ARTHUR, G.; BITTMAN, R. The inhibition of cell signaling pathways by antitumor etherlipids. Biochimica et Biophysica Acta (BBA), v. 1390, p. 85-102, 1998.

AYYANAR, M; IGNACIMUTHU, S. Herbal medicines for wound healing among tribal people in southern India: ethnobotanical and scientific evidences. International Journal of Applied Research in Natural Products, v.2, p. 29-42, 2009.

BALACHANDRAN, V. S. et al. Recent advances in cardanol chemistry in a nutshell: from a

nut to nanomaterials. Chemical Society Reviews, v. 42, p. 413-832, 2013.

BAPELA, M.J.; KAISER, M.; MEYER, J.J.M. South African Journal of Botany Antileishmanial activity of selected South African plant species. South African Journal of Botany, v. 108, p. 342-345, 2017.

BENITEZ, N.A. et al. Spatial and simultaneous seroepidemiology of anti-Leishmania spp. antibodies in dog owners and their dogs from randomly selected households in a major city of southern Brazil. Preventive Veterinary Medicine, v. 154, p. 47-53, 2018.

BURZA, S.; CROFT, S.L.; BOELAERT, M. Leishmaniasis. Lancet, v. 392, p. 951-970, 2018.

CÂMARA, C. R. S. Indicadores de qualidade de amêndoas de castanha de caju em pedaços durante o processo industrial. 2010.118f. Dissertação (Mestrado) - Centro de Ciências Agrárias, Universidade Federal do Ceará, Fortaleza, 2010.

CLAYTON, C.; HAEUSLER, T.; BLATTNER. Protein trafficking in kinetoplastid protozoa. Revista de Microbiologia, v. 59, n. 3, p. 325-344, 1995.

DI GIORGIO, C. et al. In vitro activities of 7 substituted 9-chloro and 9-amino-2-methoxyacridines and their bis- and tetra-acridine complexes against Leishmania infantum. Antimicrobial agents and chemotherapy. v. 47, n. 1, p. 174-180, 2003.

DIOGENES, M. J. N.; MARAIS, S. M.; CARVALHO, F. F. Contact dermatitis among cashew nut workers. Contact Dermatitis, v. 35, p.114-115, 1996.

DORLO, T.P.C. et al. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. Journal of Antimicrobial Chemotherapy, v. 67, n. 11, p. 2576-2597, 2012.

DUMMER, R. et al. Topical administration of hexadecylphosphocholine in patients with cutaneous lymphomas: results of a phase I/II study. Journal American Academy Dermatology, v. 29, p.963-970, 1993.

EINHORN, L.H. Curing metastatic testicular cancer. Proceedings of the National Academy of Sciences, v. 99, p.4592-4595, 2002.

ENGEL, J. C. et al. Aerobic glucose fermentation by Trypanosoma cruzi axenic culture amastigote-like forms during growth and differentiation to epimastigotes. Molecular and Biochemical Parasitology, v. 26, n. 1-2, p. 1-10, 1987.

FUNARI, C.S. et al. Oleanonic acid from Lippia lupulina (Verbenaceae) shows strong in vitro antileishmanial and antitrypanosomalactivity. Acta Amazonica, v. 46, p. 411-416, 2016.

GONZÁLEZ-COLOMA, A. et al. Antileishmanial, antitrypanosomal, and cytotoxicscreening of ethnopharmacologically selected Peruvian plants. Parasitology Research, v. 110, p. 1381-1392, 2012.

HEMSHEKHAR, M. et al. Emerging roles of anacardic acid and its derivatives: a pharmacological overview. Basic & Clinical Pharmacology & Toxicology, v. 110, n. 2, p. 122-132, 2012.

KATZUNG, B.G. Farmacologia básica e clínica. 10. ed. Mc Graw-Hill, São Paulo, 2007. KHADEMVATAN, S.; GHARAVI, M.J; RAHIM, F.; SAKI, J. Miltefosine-induced apoptotic cell death on Leishmania major and L. tropica strains. Korean Journal of Parasitology, v. 49, p. 17-23, 2011.

KUBO, I.; MUROI, H.; HIMEJIMA, M. Structure-Antibacterial activity relationships of anacardic acids. Journal of Agricultural and Food Chemistry, v. 41, p. 1016-1019, 1993.

KUDI, A.C. et al. Screening of some Nigerian medicinal plants for antibacterial activity. Journal of Ethnopharmacology, v. 67, p. 225-8, 1999.

LEGUT, M. et al. Anacardic acid enhances the anticancer activity of liposomal mitoxantrone towards melanoma cell lines-in vitro studies. International Journal of Nanomedicine, v. 9, n. 1, p. 653, 2014.

LUX, H. Ether lipid metabolism, GPI anchor biosynthesis, and signal transduction are putative targets for anti-leishmanial alkyl phospholipid analogues. Advances in Experimental Medicine and Biology, v. 416, p. 201-211, 1996.

MACHADO, M. et al. Activity of Thymus capitellatus volatile extract, 1.8-cineole and borneol against Leishmania species. Veterinary Parasitology, v. 200, p. 39-49, 2014.

MANSOUR, R. et al. The effect of Vitis vinifera L. leaves extract on Leishmania infantum. Iranian Journal of Pharmaceutical Research, v. 12, p. 349-355, 2013.

MESA, C. et al. In vitro and in vivo activities of three Acridine Thioethers against Leishmania donovani. Pharmacology, v. 65, p. 74-82, 2002.

NUNES, C.M. et al. Serological, parasitological and molecular tests for canine visceral leishmaniosis diagnosis in a longitudinal study. Revista Brasileira de Parasitologia Veterinária, v. 24, n. 4, p. 402-9, 2015.

OLIVEIRA, M.S.C. et al. Antioxidant, larvicidal and antiacetylcholinesterase activities of cashew nut shell liquid constituents. Acta Tropica, v. 117, p. 165-170, 2010.

OPAS/OMS - Organização Pan-Americana da Saúde/Organização Mundial da Saúde: Leishmanioses: Informe Epidemiológico nas Américas: Washington, 2017. Disponível em: < https://iris.paho.org/bitstream/handle/10665.2/34113/informe_leishmanioses_5_por.pdf?sequence=1&isAllowed=y>. Acesso em: 02 dez. 2019.

OPPERDOES, F. R. Compartmentation of carbohydrate metabolism in trypanosomes. Annual Review of Microbiology, v. 41, p. 127-151, 1987.

PEREIRA, J.M. et al. Anacardic acid derivatives as inhibitors of glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma cruzi. Bioorganic & Medicinal Chemistry, v. 16, p. 8889-8895, 2008.

RATH, S. et al. Antimoniais empregados no tratamento da leishmaniose: Estado de arte. Química Nova, v. 26, p. 550-555, 2003.

SANDJO, L. P. et al. Individual and combined antiparasitic effect of six plant metabolites against Leishmania amazonensis and Trypanosoma cruzi. Bioorganic and Medicinal Chemistry Letters, v. 26, n. 7, p. 1772-1775, 2016.

SCHIMMING, B.C.; PINTO E SILVA, R.C. Leishmaniose visceral canina: revisão de literatura. Revista Científica Eletrônica de Medicina Veterinária. v. 10, p. 1-17, 2012.

SEONG, Y.A. et al. Induction of the endoplasmic reticulum stress and autophagy in human lung carcinoma A549 cells by anacardic acid. Cell Biochemistry and Biophysics, v. 68, n. 2, p. 369-377, 2014.

SERAFIM, V. L. et al. New thiophene-acridine compounds: Synthesis, antileishmanial activity, DNA binding, chemometric, and molecular docking studies. Chemical Biology & Drug Design, v. 91, n. 6, p. 1141-1155, 2018.

SETIANTO, W.B. et al. Pressure profile separation of phenolic liquid compounds from cashew (Anacardium occidentale) shell with supercritical carbon dioxide and aspects of its phase equilibria. The Journal of Supercritical Fluids, v. 48, p. 203-210, 2009.

SILVA, A.A.S. Atividade leishmanicida de triterpenos isolados de Musa paradisiaca e do ácido anacárdico e derivados contra Leishmania infantum chagasi. 2013. 113 f. Dissertação (Mestrado) - Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza, 2013.

SOUZA-SILVA, F. et al. Epoxy-α-lapachone has in vitro and in vivo anti-Leishmania (Leishmania) amazonensis effects and inhibits eerine proteinaseactivity in this parasite. Antimicrobial Agents and Chemotherapy, v. 59, p. 1910-1918, 2015.

TORRES, F.A.E. et al. New drugs with antiprotozoal activity from marinealgae: a review. Revista Brasileira de Farmacognosia, v. 24, p. 265-276, 2014.

VILA-NOVA, N.S. et al. Leishmanicidal activity and cytotoxicity of compounds from two Annonacea species cultivated in Northeastern Brazil. Revista da Sociedade Brasileira de Medicina Tropical, v. 44, p. 567-571, 2011.

VERWEIJ, J.; et al. A dose-finding study of miltefosine (hexadecylphosphocholine) in patients with metastatic solid tumoursse. Journal of Cancer Research and Clinical Oncology, v. 118, p. 606-608, 1992.

WU, Y. HE, L. et al. Anacardic acid (6-pentadecylsalicylic acid) inhibits tumor angiogenesis by targeting Src/FAK/Rho GTPases signaling pathway. The Journal of Pharmacologyand Experimental Therapeutics, v. 339, n. 2, p. 403-411, 2011.

ZUFFEREY, R.; MAMOUN, C.B. Choline transport in Leishmania major promastigotes and its inhibition by choline and phosphocholine analogs. Molecular and Biochemical Parasitology, v. 125, p. 127-134, 2002.




DOI: https://doi.org/10.26694/jibi.v6i1.9852

Apontamentos

  • Não há apontamentos.


Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

ISSN: 2448-0002

 

Qualis CAPES - QUADRIÊNIO 2013-2016

Área de avaliação (Qualis Capes)

Classificação

Interdisciplinar

B4

Medicina Veterinária

B4

Odontologia

B4

Indexado em:

 


Apoio